3,136 research outputs found

    Tackling the Global NCD Crisis: Innovations in Law and Governance

    Get PDF
    35 million people die annually of non-communicable diseases (NCDs), 80% of them in low- and middle-income countries—representing a marked epidemiological transition from infectious to chronic diseases and from richer to poorer countries. The total number of NCDs is projected to rise by 17% over the coming decade, absent significant interventions. The NCD epidemic poses unique governance challenges: the causes are multifactorial, the affected populations diffuse, and effective responses require sustained multi-sectorial cooperation. The authors propose a range of regulatory options available at the domestic level, including stricter food labeling laws, regulation of food advertisements, tax incentives for healthy lifestyle choices, changes to the built environment, and direct regulation of food and drink producers. Given the realities of globalization, such interventions require global cooperation. In 2011, the UN General Assembly held a High-level meeting on NCDs, setting a global target of a 25% reduction in premature mortality from NCDs by 2025. Yet concrete plans and resource commitments for reaching this goal are not yet in the offing, and the window is rapidly closing for achieving these targets through prevention--as opposed to treatment, which is more costly. Innovative global governance for health is urgently needed to engage private industry and civil society in the global response to the NCD crisis

    Beware Those Bearing Gifts: Physicians' Fiduciary Duty to Avoid Pharmaceutical Marketing

    Get PDF
    This is the published version

    Explaining the entropy excess in clusters and groups of galaxies without additional heating

    Get PDF
    The X-ray luminosity and temperature of clusters and groups of galaxies do not scale in a self-similar manner. This has often been interpreted as a sign that the intracluster medium has been substantially heated by non-gravitational sources. In this paper, we propose a simple model which, instead, uses the properties of galaxy formation to explain the observations. Drawing on available observations, we show that there is evidence that the efficiency of galaxy formation was higher in groups than in clusters. If confirmed, this would deplete the low-entropy gas in groups, increase their central entropy and decrease their X-ray luminosity. A simple, empirical, hydrostatic model appears to match both the luminosity-temperature relation of clusters and properties of their internal structure as well.Comment: 5 pages, 4 figures, accepted in ApJL; added one reference, otherwise unchange

    Federalism and Health Care in Canada: A Troubled Romance?

    Get PDF
    Canadian federalism fragments health system governance. Although the Constitution has been interpreted as providing shared jurisdiction over health generally, with respect to health care, the courts have interpreted it as giving direct jurisdiction to the provinces. The federal role in health care is therefore indirect, but nevertheless potentially powerful. For example, the federal government has used its spending powers to establish the Canada Health Act (CHA), which commits funding to provinces on condition they provide first-dollar public coverage of hospital and physician services. However, in recent times, as federal contributions have declined, the CHA has been weakly enforced. Further, the failure to broaden the CHA to include prescription drugs, dentistry, and other important aspects of health care have contributed to Canada’s abysmal record on Aboriginal health and its increasingly poor rankings in international comparisons. Progress requires enforcement of an adequately funded CHA, national pharmacare, and concerted action on Aboriginal health

    Unusual case of recurrent renal artery stenosis: lessons to learn

    Get PDF

    Speed up of Fresnel transforms for Digital holography using pre-computation

    Get PDF
    We show how the common Fresnel reconstruction of digital holograms can be speeded up on ordinary computers by precomputing the two chirp factors for a given detector array size and then calling these values from memory during the reconstruction. The speedup in time is shown for various hologram sizes. We also run the same algorithm on a Nvidia GPU using Matlab

    A Practical Guide to Digital Holography and Generalized Sampling

    Get PDF
    The theorems of Nyquist, Shannon and Whittaker have long held true for sampling optical signals. They showed that a signal (with finite bandwidth) should be sampled at a rate at least as fast as twice the maximum spatial frequency of the signal. They proceeded to show how the continuous signal could be reconstructed perfectly from its well sampled counterpart by convolving a Sinc function with the sampled signal. Recent years have seen the emergence of a new generalized sampling theorem of which Nyquist Shannon is a special case. This new theorem suggests that it is possible to sample and reconstruct certain signals at rates much slower than those predicted by Nyquist-Shannon. One application in which this new theorem is of considerable interest is Fresnel Holography. A number of papers have recently suggested that the sampling rate for the digital recording of Fresnel holograms can be relaxed considerably. This may allow the positioning of the object closer to the camera allowing for a greater numerical aperture and thus an improved range of 3D perspective. In this paper we: (i) Review generalized sampling for Fresnel propagated signals, (ii) Investigate the effect of the twin image, always present in recording, on the generalized sampling theorem and (iii) Discuss the effect of finite pixel size for the first time

    Removing the twin image in digital holography by segmented filtering of in-focus twin image

    Get PDF
    We propose and investigate a new digital method for the reduction of twin-image noise from digital Fresnel holograms. For the case of in-line Fresnel holography the unwanted twin is present as a highly corruptive noise when the object image is numerically reconstructed. We propose to firstly reconstruct the unwanted twin-image when it is in-focus and in this plane we calculate a segmentation mask that borders this in focus image. The twin-image is then segmented and removed by simple spatial filtering. The resulting digital wavefield is the inverse propagated to the desired object image plane. The image is free of the twin-image resulting in improved quality reconstructions. We demonstrate the segmentation and removal of the unwanted twin-image from in-line digital holograms containing real-world macroscopic objects. We offer suggestions for its rapid computational implementation

    Speed up of Fresnel transforms for Digital holography using pre-computation

    Get PDF
    We show how the common Fresnel reconstruction of digital holograms can be speeded up on ordinary computers by precomputing the two chirp factors for a given detector array size and then calling these values from memory during the reconstruction. The speedup in time is shown for various hologram sizes. We also run the same algorithm on a Nvidia GPU using Matlab

    Compensation effects in GaN:Mg probed by Raman spectroscopy and photoluminescence measurements

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Appl. Phys. 113, 103504 (2013) and may be found at https://doi.org/10.1063/1.4794094.Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compensation effects in GaN:Mg leading to the conclusion that compensation due to defect incorporation triggered by Mg-doping already affects the crystal properties at doping levels of around 7 × 1018 cm−3. Thereby, the generation of nitrogen vacancies is introduced as the driving force for the change of the strain state and the near band edge luminescence.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
    • …
    corecore